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Abstract

Predictions of reactive transport in the subsurface are routinely

compromised by both model (structural) and parametric uncertainties.

In the first part of this talk, I will present a set of computational

tools for quantifying these two types of uncertainties. The model

uncertainty is resolved at the molecular scale where epistemic

uncertainty incorporates aleatory uncertainty. The parametric

uncertainty is resolved at both molecular and continuum (Darcy)

scales. The second part of the talk will deal with the combined

effects of uncertainty in reactions and heterogeneity of the medium on

the transport of reactive contaminants. Quantification of uncertainty

in multi-component reactive transport using a stochastic Lagrangian

framework and a Continuous Time Random Walk formulation will be

discussed in detail.
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Outline

• Uncertainties in Geochemical Reactions

• Lagrangian Model for Reactive Transport

• Continuous Time Random Walk Formulation

• Conclusions
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Part I

Quantification of Uncertainties
in Geochemical Reactions

Collaborators :

Daniel Tartakovsky, UC San Diego

Bruce Robinson, Los Alamos National Lab

Alejandro Aceves, Southern Methodist University
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A Simple Chemical Reaction

Consider an irreversible chemical reaction involving three reacting

species, two reactants A1 and A2 forming a species A3, such that

A1 +A2→ A3.

The reaction rate equations for the concentrations Ci of each species

can be written as

dCi
dt

= −kC1C2, i = 1, 2,
dC3

dt
= kC1C2,

where the reaction rate constant k, initial conditions are specified

C1(0) = C, C2(0) = C, C3(0) = 0,

C and k have precisely determined values.
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Deterministic Model

The system of reaction equations described in the previous slide

can be solved exactly by introducing new variables

u1 = C1 − C2, u2 = C1 + C3, u3 = C1 + C2 + 2C3

which yields a set of decoupled equations

dui
dt

= 0, i = 1, . . . , 3.

Due to the Initial Conditions, C1(t) = C2(t), which leads to

C1(t) = C2(t) =
C

Ckt+ 1
, C3(t) =

Ckt

Ckt+ 1
.
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Uncertainties in Chemical Reactions

• Parametric uncertainty : Refers to the imperfect knowledge about

the coefficients entering the functions Fi (i = 1, . . . , n) and/or

initial concentrations.

• Parametric uncertainties relating to reaction rate constant are

studied here.

• Model uncertainty : Refers to the imperfect knowledge about the

functional forms of Fi (i = 1, . . . , n).

• Model Uncertainty relating to imperfect molecular collisions and

imperfect mixing are considered.

• The solution in the determinsitic case is compared with those that

consider each or both types of uncertainty.
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Quantification of Parametric Uncertainty

This uncertainty can be quantified by treating the reaction rate

constant k as a random process k(t) with a mean k̄, variance σ2
k.

dCi
dt

= −k̄C1C2− δkC1C2, i = 1, 2,
dC3

dt
= k̄C1C2 + δkC1C2,

The numerical solution is given (Kloeden and Platen, )by

C1(t+ ∆t) = C1(t)− k̄C1(t)C2(t) [∆t+ ∆W ] ,

where ∆t is a time step and ∆W is a Gaussian variable with zero

mean and the variance proportional to the variance of k.
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Results : Error Bars

99.7% Confidence Interval
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Quantification of Model Uncertainty

Modified Gillespie algorithm: Reaction PDF P (τ, µ) for reaction µ

to occur in the infinitesimal time interval [t+ τ, t+ τ + ∆τ ] given a

certain state at time t.

Residence time τ , during which no reactions occur, depends upon

the total molecular population of all reacting species and reflects the

randomness of collisions.

A constant deterministic value τ corresponds to standard reaction

rate equations

dCi
dt

= Fi(C1, C2, ...Cn), i = 1, . . . , n
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Quantification of Model Uncertainty (cntd.)

Modified SSA:

1. Compute the total number of reacting pairs of molecules available

for each reaction ai, and compute their sum a0 =
∑
ai

2. Generate random numbers r1 and r2 on the uniform unit interval

and m uniformly random on the interval [1, 10]

3. Compute τ = −ma−10 ln r1

4. Determine which reaction µ occurs by taking µ to be that integer

for which
∑µ−1
j=1 aj < r2a0 ≤

∑µ
j=1 aj

5. Update time by τ and molecular levels for reaction µ (decrease

reactants by 1 and increase products by 1)

6. Repeat steps 1-5 until either of the reactant population goes to

zero or steady state is reached
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Quantification of Joint Uncertainty

To account for both sources of uncertainty, we modify the first step

of the algorithm by replacing the constant value k with its random

counterpart whose mean and variance are k̄ and σ2
k, respectively.
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Example: Neptunium Ion Exchange

Reacting system:

NpO+
2 + {tAl −Na}
 {tAl −NpO2}+Na+

Ca2+ + 2{tAl −Na}
 {2tAl − Ca}+ 2Na+.

Standard deterministic model:

dC1

dt
= −k1C1C4 + k2C2C3 − 2k3C

2
1C6 + 2k4C

2
2C5,

dC2

dt
= k1C1C4 − k2C2C3 + 2k3C

2
1C6 − 2k4C

2
2C5,

dC3

dt
= k1C1C4 − k2C2C3,

dC4

dt
= −k1C1C4 + k2C2C3,

dC5

dt
= k3C1

2C6 − k4C2
2C5,

dC6

dt
= −k3C1

2C6 + k4C
2
2C5
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Neptunium Ion Exchange : Results

To account for uncertainty in the reaction rate constants k1, k2,

k3, and k4, we treat them as normal white noise, whose mean values

were determined from experimental data (Viswanathan et al, 1998).

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−5

Time

C
on

ce
nt

ra
tio

n 
of

 a
qu

eo
us

 n
ep

tu
ni

um

 

 

Parametric uncertainty
Modeling uncertainty
Combined uncertainty

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−5

Time

C
on

ce
nt

ra
tio

n 
of

 s
or

be
d 

ne
pt

un
iu

m

 

 

Parametric uncertainty
Modeling uncertainty
Combined uncertainty

Aqueous Neptunium Sorbed Neptunium

13



Neptunium Ion Exchange: Results

Distribution coefficient Kd = C3/C4:
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Neptunium Ion Exchange: Results

Distribution coefficient Kd = C3/C4:
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Summary of Results

1. The rate at which a reaction occurs varies greatly due to the

inclusion of various sources of uncertainty.

2. The range of distribution coefficients obtained for the neptunium

competitive ion exchange process considered underscores the need

for uncertainty quantification. It is expected that the same behavior

will be present in more complex, multicomponent systems involving

more chemical species.

3. The proposed approach yields a complete probabilistic description

of the reaction rates and distribution coefficient, key parameters

affecting the fate and migration of neptunium in the subsurface.

This is important, since these distributions are highly skewed.
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Summary of Results

4. The uncertainty quantification tools employed in this study are

fully scalable and can be used to investigate any number of coupled

reversible or irreversible geochemical reactions.

5. Transport of radionuclides such as neptunium could be greatly

affected by the reactions that take place in the subsurface and

hence quantification of modeling and parametric uncertainties is

crucial in describing the overall transport.

6. Srinivasan et al, 2007, Quantification of Uncertainty in Geochemical

Reactions, Water Resources research, 43, W12415.
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Part II

Lagrangian Model of Reactive Transport
in Heterogeneous Porous Media with
Uncertain Properties

Collaborators :

Gerardo Severino, UC San Diego

Daniel Tartakovsky, UC San Diego

Hari Viswanathan, Los Alamos National Lab
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Lagrangian Formulation : Motivation

• Transport of reactive contaminants is affected by heterogeneities in

the medium as well as uncertainties in the geochemical reactions.

• Heterogeneity in porous media : Hydraulic conductivity K varies

spatially and can be considered as a random space function.

• The reaction rate is treated as an unknown, reflecting parametric

uncerties in non-linear reactions.

• We employ a Lagrangian approach to study the combined effects

of both.

• Transport of 3 species with a bi-molecular reaction is considered

here as an example, but the analysis can be extended to general

multi-component non-linear reactive systems.
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Lagrangian Formulation : Introduction

Consider a mixture of N dissolved species entering the system at

t ≥ 0 through an injection area A0 located in the plane x1 = 0. The

flow path for any one realization, arriving at a control plane x1 > 0

at time t = τ is as shown

control plane

x1

x2

x3

 ,,11 xV

A0

 a1V

ad

injecting plane

   xVU  0,0,U

x1
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Lagrangian Formulation : Introduction

For a particle located at a ∈ A0 at t = 0, let X(t; a) = (X1, X2, X3)
T

denote its trajectory. Since the flow velocity V is random, the particle

trajectory X(t; a) satisfies a stochastic ordinary-differential equation

dX

dt
= V(X), X(0; a) = a. (1)

We derive a Lagrangian alternative (Cvetkovic and Dagan, 1994)

by replacing the Eulerian coordinates x = (x1, x2, x3)
T with their

Lagrangian counterparts ξ = (ξ1, ξ2, ξ3)
T defined as

ξ1 = τ(x1; a), ξ2 = x2 − η(x1; a), ξ3 = x3 − ζ(x1; a). (2)

where τ(x1; a) denotes the travel time from the injection plane

(x1 = 0) to the control plane (x1 > 0), η and ζ are defined as
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Lagrangian Formulation : Introduction

η(x1; a) = X2(τ ; a) and ζ(x1; a) = X3(τ ; a), such that a streamline

originating at the point a is described by equations x2 = η(x1; a) and

x3 = ζ(x1; a).

Neglecting dispersion, a fluid particle stays on the same streamline,

so that ξ2 = ξ3 = 0. The transport equation in the Lagrangian

coordinate system is now one-dimensional, given by

LC = Ψ
(
C,

∂C

∂t

)
, L ≡ ∂

∂t
+

∂

∂τ
, (3)

which applies to any stream-tube originating from a ∈ A0.

The concentrations C = (C1, . . . , CN) are now functions of the

Lagrangian variables τ and t.
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Lagrangian Formulation : Introduction

• The goal is to express the ensemble statistics of travel time τ

and corresponding breakthrough curves (BTCs) in terms of the

statistics of the input parameters, i.e. log-conductivity Y (x) and

reaction rates.

• We derive expressions for the BTCs and their temporal moments

for N reacting contaminants.

• The example used here for the purpose of illustratation involves

reactants A, B and product C participating in the following

irreversible reaction with reaction rate κ

A+B → C. (4)
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Lagrangian Formulation : Assumptions

• Porous media are assumed to be mildly heterogeneous. The

assumption of mild heterogeneity refers to the requirement that

the variance of log-conductivity be small, σ2
Y < 1.

• Local-scale molecular diffusion and hydrodynamic dispersion are

neglected.

• Uncertain reaction rate constants are treated as random variables.

• Fluid flow is unaffected by chemical reactions.

• Flow is uniform in the mean.
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Lagrangian Formulation : Derivations

The ensemble mean of the flux-averaged concentration for species i

is given by

C
f

i (t;x1) '

∫
A0

V1(x)Ci(x, t)da∫
A0

V1(x)da

. (5)

where V1 is the flow along the streamline.

Suppose that the set of chemical reactions is controlled by a set

of M random reaction constants κ = (κ1, . . . , κM) with a joint

probability density function (PDF) gκ(K).

Let gτ(T ;x1) denote a PDF of the travel time τ that is related to

the statistics of gY , the PDF of log-conductivity Y . Then Ci(t;x1),

the ensemble mean of the concentration C
f

i (t;x1) averaged over all
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Lagrangian Formulation : Derivations

possible realizations of κ, is given by

Ci(t;x1) ≡
∫ ∫

Ci(x1, t;Y,K)gY (Y)gκ(K)dYdK

=

∫ ∫
Ci(x1, t; T ,K)gτ(T ;x1)gκ(K)dT dK. (6)
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Irreversible Bi-Molecular Reaction

For the reaction (4), we will denote the concentrations of the species

as γ (γ = A,B,C), and κ as the rate coefficient. The Lagrangian

equations for the 3 species are

LCγ = −κCACB (γ = A,B), LCC = κCACB. (7)

The Lagrangian equations (7) are defined on the semi-infinite domain

x1 > 0, and are subject to the initial and boundary conditions

Cγ(τ, 0) = C in
γ (τ) and Cγ(0, t) = C0

γ(t) (γ = A,B,C), (8)

where C in
γ and C0

γ are the initial and boundary concentration of the

species γ, respectively.
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Irreversible Bi-Molecular Reaction

Initial concentrations of the two reactants are set to

C in
γ (x) = cinγ

{
1 Uτa < x < Uτb

0 otherwise,
(9)

The initial concentration of the reactant product is set to C in
C = 0.

The reaction rate κ is distributed uniformly on the interval [κ −
∆, κ+ ∆] with mean κ and half-band ∆, i.e. gκ(K) = 1/(2∆). We

also set c0γ = 0, λ = 0.1 and σ2
Y = 1.
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Results : Temporal behavior
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Results : Breakthrough Curves
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Summary of Results

1. The concentrations of reactants and their product are

simultaneously influenced by the distribution of the travel time

τ and a geochemical irreversible reaction.

2. The variance of the time it takes particles to travel from the

injecting plane to the control plane quantifies uncertainty in the

advective component of the solute transport.

3. The Damköhler number Da, a dimensionless parameter defined as

the ratio of the advection and reaction time scales, determines the

relative importance of various sources of parametric uncertainty.

For large Da, i.e. when reactions are much faster than advection,

uncertainty in the reaction rate constants dominates predictive

uncertainty. For small Da, this source of parametric uncertainty is
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Summary of Results

negligible.

4. Our analysis of the breakthrough curves of the reactants and their

product concentrations reveals that for given Da the control plane

should be located at x1 = Ih/Da (where Ih is the integral scale of

log-conductivity) in order to detect the reaction regime.

5. Severino et al, 2011, Lagrangian Model of Reactive Transport in

Heterogeneous Porous Media with Uncertain Properties, to appear

in Procedings of the Royal Society A.
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Part III

Random Walk Particle Tracking
Simulations of Non-Fickian Transport
in Heterogeneous Media

Collaborators :

Daniel Tartakovsky, UC San Diego

Marco Dentz, Institute of Environmental Assessment and Water

Research, Barcelona

Hari Viswanathan, Los Alamos National Lab

Bruce Robinson, Los Alamos National Lab

33



CTRW Formulation for Transport

• Traditional ways to model transport include analytical approaches,

finite difference, finite element or particle tracking methods.

• Particle tracking aproach eliminates numerical dispersion and allows

for stochastic time steps.

• Particle tracking methods are mainly concerned with the

breakthrough of concentration across a control plane, rather than

with the resolution of the plume over the entire field of study which

is possible with the Convolution Based Particle Tracking (CBPT)

method described here.

• Most particle tracking techniques use the ADE as the basis for

modeling transport.
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CTRW Formulation for Transport

• The ADE is only capable of simulating Fickian transport, a

phenomenon not always observed at the lab or field scales.

• The Continuous Time Random Walk (CTRW) theory provides a

convincing description of non-Fickian transport.

• We combine the advantages of both these methods CBPT and

CTRW in our particle tracking algorithm.
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Convolution Based Particle Tracking (CBPT)

The mass density function ĉ(ξ, x, t) is defined as the probability
of locating mass from source location ξ at a control volume centered
at location x at time t. In addition, consider a time-varying input
mass flux ṁ(ξ, t) at ξ. Applying the principle of superposition in
time, the concentration c(ξ, x, τ) at time τ can be computed using
the following numerical convolution equation:

c(ξ, x, τ) =

τ∫
0

ṁ(ξ, τ − t)ĉ(ξ, x, t)dt

The total concentration C(x, τ) is determined by the superposition
of the individual concentrations obtained from each source term.

C(x, τ) = Σic(ξi, x, τ)
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Convolution Based Particle Tracking (CBPT)

The equation for particle displacements is given by

XN+1 = XN +A[XN ]∆t+B[XN ].ξN
√

∆t

tN+1 = tN + ∆t

where XN is the particle location at step N , ξN is a random 3-

dimensional vector and A and B are related to the flow and transport

properties of the medium as follows:

A = v +∇.D

B.BT = 2D

A is referred to as the background drift.

37



CTRW theory

We define transition rates of particles from position x from x′ as

w(x, x′). The Master Equation or the transport equation can be

written as follows:

∂C(x, t)

∂t
= −Σx′w(x′, x)C(x, t) + Σx′w(x, x′)C(x′, t)

where C(x, t) is the particle concentration at position x and time

t.

A form of the equations similar to the ADE can be derived

(Berkowitz et al, 2002) from a Taylor expansion of transition rates

w(x, x′) substituted into the Master Equation to yield the following
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CTRW theory

CTRW equation for transport

∂C(x, t)

∂t
= −v(x).∇C(x, t) +∇.∇ [D(x)C(x, t)]

where v(x) is the velocity field and D(x) is the dispersion tensor,

both defined in terms of spatial moments of the transition rate.

The CTRW equations in this implementation are

XN+1 = XN +A[XN ]∆t+B[XN ].ξN
√

∆t

tN+1 = tN + τN∆t

where A, B and ξ are as described above. The random processes

ξN and τN are each uncorrelated.
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CTRW theory

The transition time distribution is given by a truncated power-law

distribution (see Dentz and Berkowitz, 2004 for details)

ψ(t) =
(
t1τ

β
2 exp(τ

−1
2 )Γ(−β, τ12 )

)−1 exp(−t/t2)
(1 + t/t1)1+β

where τ2 = t2/t1 and Γ(a, x) is the incomplete Gamma function.
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Results : Comparison with Analytical Solution

The test case chosen here uses continuous injection of solute at

the inlet. The breakthrough is computed at a distance of x = 15.2

km over a total time of 3000 years. The results from both analytical

(CTRW toolbox, dots) and numerical (hybrid CBPT- CTRW model,

solid lines) are plotted.
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Results : Hybrid CBPT-CTRW model
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Results : Hybrid CBPT-CTRW model
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Results : Hybrid CBPT-CTRW model
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Results : Heterogeneous Medium

The next test case is for a heterogeneous porous medium, with a

log-normal permeability distribution k(x).

Plume for the ADE and different values of β
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Summary of Results

1. In this research, we have successfully incorporated the CTRW theory

into a particle tracking algorithm (CBPT) and verified against the

analytical solution.

2. The CTRW theory succesfully provides an alternate approach to

transport that accounts for these subgrid scale heterogeneities.

3. Combining these two approaches, CTRW and CBPT now allows

the modeling of non-Fickian transport at large scale sites with

non-uniform properties.

4. Srinivasan et al, 2010, Random Walk Particle Tracking Simulations

of Non-Fickian Transport in Heterogeneous Media, Journal of

Computational Physics, 229 (11),4304-4314 .
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Key Results

• The modified Stochastic Simulation Algorithm was developed to

account for parametric and model uncertainties in complex reacting

systems. This yielded a complete probabilistic description of the

reaction rates and distribution coefficient which is crucial, since

these distributions were highly skewed. This algorithm can be used

to quantify parametric and model uncertainty in multi-component

complex reacting systems.

• The problem of anomalous or non-Fickian transport was succesfully

modeled by incorporating a time random walk formulation into a

particle tracking technique (hybrid CBPT-CTRW model). Since

this is a fully scalable method, it can be implemented at field scale

sites with non-uniform properties.
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Key Results

• The concentrations of reactants and their product are

simultaneously influenced by the distribution of the travel time

τ and a geochemical irreversible reaction. The variance of the

time it takes particles to travel from the injecting plane to the

control plane quantifies uncertainty in the advective component of

the solute transport. The Damköhler number Da determines the

relative importance of various sources of parametric uncertainty.
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Ongoing and Future Work

• Study the transport behavior of Neptunium ions undergoing

competitive sorption in a heterogeneous field using the Lagrangian

stochastic approach.

• Incorporate reactions and the uncertainties therein, into the CBPT-

CTRW model.

• Verify the conclusions of the different theoretical models studied

here using experimental data.
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Questions?

Thank you!
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